White Dots do Matter: Rewriting Reversible Logic Circuits

نویسندگان

  • Mathias Soeken
  • Michael Kirkedal Thomsen
چکیده

The increased effort in recent years towards methods for computer aided design of reversible logic circuits has also lead to research in algorithms for optimising the resulting circuits; both with higher-level data structures and directly on the reversible circuits. To obtain structural patterns that can be replaced by a cheaper realisation, many direct algorithms apply so-called moving rules; a simple form of rewrite rules that can only swap gate order. In this paper we first describe the few basic rules that are needed to perform rewriting directly on reversible logic circuits made from general Toffoli circuits. We also show how to use these rules to derive more complex formulas. The major difference compared to existing approaches is the use of negative controls (white dots), which significantly increases the algebraic strength. We show how existing optimisation approaches can be adapted as problems based on our rewrite rules. Finally, we outline a path to generalising the rewrite rules by showing their forms for reversible control-gates. This can be used to expand our method to other gates such as the controlled-swap gate or quantum gates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ricercar: A Language for Describing and Rewriting Reversible Circuits with Ancillae and Its Permutation Semantics

Previously, Soeken and Thomsen presented six basic semantics-preserving rules for rewriting reversible logic circuits, defined using the well-known diagrammatic notation of Feynman. While this notation is both useful and intuitive for describing reversible circuits, its shortcomings in generality complicates the specification of more sophisticated and abstract rewriting rules. In this paper, we...

متن کامل

A Classical Propositional Logic for Reasoning About Reversible Logic Circuits

We propose a syntactic representation of reversible logic circuits in their entirety, based on Feynman’s control interpretation of Toffoli’s reversible gate set. A pair of interacting proof calculi for reasoning about these circuits is presented, based on classical propositional logic and monoidal structure, and a natural order-theoretic structure is developed, demonstrated equivalent to Boolea...

متن کامل

Efficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits

Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...

متن کامل

Efficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits

Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...

متن کامل

Reversible Logic Multipliers: Novel Low-cost Parity-Preserving Designs

Reversible logic is one of the new paradigms for power optimization that can be used instead of the current circuits. Moreover, the fault-tolerance capability in the form of error detection or error correction is a vital aspect for current processing systems. In this paper, as the multiplication is an important operation in computing systems, some novel reversible multiplier designs are propose...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013